How big did ancient millipedes get? Bigger than you’d like.

A fossil found in sandstone near the England-Scotland border contains the largest millipede ever found—and the discovery was completely by accident.

In January 2018, Neil Davies, an Earth scientist at the University of Cambridge, had taken a group of PhD students on a “social trip” to Northumberland, England, where he had previously gone on holiday. The group noticed some rocks had crashed onto the beach where they were walking. One of those chunks happened to contain a paleontological surprise.

“The way the boulder had fallen, it had cracked open and perfectly exposed the fossil, which one of our former PhD students happened to spot when walking by,” Davies said in a statement. “It was a complete fluke of a discovery.”

Davies and his colleagues were at first unsure about what they had found. In May 2018, they extracted the fossil and brought it back to Cambridge for analysis. The specimen is just the third known example of an Arthropleura, a genus of giant millipede that roamed the Earth during the Carboniferous Period, between 359 million and 299 million years ago. But that’s not all: This Arthropleura fossil is also the oldest ever found, dating back to 326 million years ago, as well as the largest. It measures a whopping 30 inches by 14 inches.

That suggests a pretty impressive beast. The millipede itself was likely around 8.5 feet long and nearly two feet wide, and probably weighed about 110 pounds. The team’s results were published in the Journal of the Geological Society.

[Related: This eyeless millipede shattered the record for most legs]

“Finding these giant millipede fossils is rare, because once they died, their bodies tend to disarticulate,” Davies told BBC. This particular specimen is likely just part of a molted exoskeleton, rather than a piece of a millipede’s corpse. Such a sparse fossil record means that these bugs largely remain a mystery. To this day, “we have not yet found a fossilised [millipede] head,” Davies added, “so it’s difficult to know everything about them.”

For example, researchers are unsure how many legs these millipedes had. Current best guesses are either 32 or 64—a paltry set compared to the maximum 1,300 legs recently found on some living millipedes. Scientists also don’t know what these giant bugs ate to sustain their lumbering bodies, though they seem to have thrived due to an abundance of resources and little competition. But later, in the Permian Period, they went extinct—either because of a changing climate or due to new reptile species outcompeting them for food. To uncover the mysteries still lurking in giant millipedes’ history, researchers will need more examples of them to fill out the fossil record.

The area of Northumberland where the fossil was found is mostly sandstone, which “is normally not brilliant for preserving fossils,” Davies told NPR. So “the fact that this has been preserved is, on the one hand, surprising. But it just suggests that actually there might be a lot more and similar things in places where people haven’t really looked for fossils before.”

The fossil will go on public display at Cambridge’s Sedgwick Museum in the New Year.

After 60 years, a mysterious Australian dinosaur just got downsized

In the 1960s, Australian coal miners stumbled across huge, bird-life footprints protruding from the ceiling of their subterranean work site in south-eastern Queensland. The marks, more than a foot long, belonged to a creature that trekked across swampy land around 250 million years ago. They sent paleontologists into a tizzy, who though the tracks belonged to a carnivorous dinosaur—a creature larger than any other predator of its time.

Some fossil experts across the globe had their doubts about the footprints coming from a predator, though. But they couldn’t quite disprove the carnivore idea because all they had access to was black and white photos and a drawing of the tracks. With 3D modeling technology today, researchers have been able to analyze the impressions further, and identify the mysterious creature as an herbivore from the group Prosauropoda.

[Related: Dinosaurs who stuck together, survived together]

“We can now make 3D models, 3D visualizations, and augmented reality so that we can get not only a clearer and more detailed understanding of the fossil that we’re examining, but also communicate that in a more complete manner,” says Anthony Romilio, paleontologist at University of Queensland and lead author on the new study published in Historical Biology. He and his team used casts of one of the prints, made by geologists and the Queensland Museum back in 1964, to create a 3D model of the dinosaur’s foot to better understand it’s entire body.

Once the track was digitized, the researchers took exact measurements from the cast and verified them with the 3D model. Back in the ‘60s, scientists had to pull estimates from the single drawing and photos; their estimates put the the print as several centimeters longer than its actual length. Without certainty of the size of the print, it’s difficult to gauge the true nature of a long-extinct dinosaur.

Cast of fossil footprint of Triassic dinosaur found in Australia in the 1960s
The new study was made possible by a cast of one of the original footprints. Courtesy of Anthony Romilio Anthony Romilio

Using the updated dimensions, and his colleagues multiplied the length of the dinosaur’s foot by a factor of four, which gave them the rough length of the leg up the hip joint. Smaller feet mean smaller legs, helping to create a picture of the entire dinosaur that indicated it was not a predator.

Even before he knew the proper size of the creature’s feet, however, Romilio had doubts about its supposed predatory behavior. Had it been a carnivore, it would have been the biggest predator of the Triassic period—which explains all the hubbub around the discovery decades ago. But other fossil finds show that dinosaurs of the previously estimated size didn’t turn up until millions of years later during the Jurassic period.

By distilling a 3D model of the track, Romilio and his team were able to make the original discovery more accessible to paleontologists across the world. Romilio also created an augmented reality visual of the dinosaur and its footprints, so that everyone, not just researchers, could see this creature on their iPhones and iPads. 

After 60 years, a mysterious Australian dinosaur just got downsized

Dr Anthony Romilio
QR codes for augmented reality version of dinosaur on iPhone app Adobe Aero

Use these QR codes on the Apple app Adobe Aero to experience the dinosaur in augmented reality. Courtesy of Anthony Romilio Dr Anthony Romilio

“This allowed a more comprehensive discussion about these footprints,” says Hendrick Klein, an expert on Triassic dinosaurs at the Saurierwelt Paläontologisches Museum in Germany. Romilio reached out to him for a second opinion after the study team realized the exact measurement of the foot came from a dinosaur that was smaller than imagined. Once Klein was involved, he corroborated the idea by looking at the Australian tracks against that of other Triassic herbivores.

“I remember that I had excavated footprints in North America, and had also seen similar footprints in Italy,” Klein says. “I compared Anthony’s results with these footprints, and what I distinctly saw was that they share similar morphology.” 

One particular feature Klein noted was the rotation of the print. The track is directed strongly towards the midline of this creature’s foot, indicating that the dinosaur’s steps rotate inwards, a feature that isn’t typically seen among predatory dinosaurs. 

Klein and Anthony both stress that prehistoric footprints are vital to understanding the fossil record. No one has identified skeletal dinosaur remains from the Triassic period in Australia yet, so researchers only have these small indications of life to better understand the continent’s past. They just have to get the math right; 3D tech will help.